Synthesis and Conformational Analysis of Six-Membered Cyclic Phenyl Phosphites

Barbara Gordillo,* Catalina Garduño, Gerardo Guadarrama, and Javier Hernández
Departamento de Quimica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México, D. F., México

Received July 27, 1994 (Revised Manuscript Received June 8, 1995)

A procedure for synthesizing potentially anancomeric equatorial phenyl phosphites (cis-1 and eq-cis-2) is reported. Spectral characteristics and low-temperature NMR studies on the phenyl phosphites suggest that eq-cis-2 is a system with a predominant chair conformation in solution. On the contrary, cis-1 is conformationally heterogeneous.

Introduction

A long time ago, Lucas et al. ${ }^{1}$ developed the synthesis of six-membered ring alkyl phosphites using glycols and phosphorus trichloride, followed by the addition of an alkoxy group as shown in Scheme 1.

Later, the application of the NMR techniques to the conformational analysis of heterocycles ${ }^{2}$ prompted Denney and his group ${ }^{3}$ to study the stereochemistry of these important phosphite intermediates. From these studies and those of others, ${ }^{4}$ it was found that equatorialsubstituted phosphites isomerized to the more stable axial diastereomers upon the addition of a catalytic amount of hydrogen chloride or during purification by preparative GC at high temperatures (Scheme 2).

As part of our interest in the study of the mechanism and the stereochemistry of the hydrolysis of phenyl phosphates ${ }^{5}$ and their S-analogs, ${ }^{6}$ we attempted to synthesize the potentially anancomeric 4 -methyl ${ }^{7 \mathrm{a}}$ and cis-4,6-dimethyl axial and equatorial phenyl phosphites 1 and 2 (Scheme 3) by using a method based on the Lucas procedure. ${ }^{4 \mathrm{a}, 7 \mathrm{~b}}$ However, under such conditions, the axial isomers were the unique products.

In this paper, we report a method for obtaining exclusively the equatorial diastereomers of 1 and 2 . The

[^0]

Scheme 1

Scheme 2

Scheme 3

conformational analysis of axial and equatorial 1 and 2 was assessed by analysis of the spectral NMR characteristics at room and low temperature of the cited compounds. The decreased stability of the aromatic equatorial phosphites as compared with the stability of aliphatic series was manifested from the results of this work.

Results and Discussion

The phosphorochloridite trans-3 was produced from the reaction between (\pm)-1,3-butanediol and phosphorus trichloride. The geometrical isomer trans-3 is thermodynamically more stable than cis-3 because of the stabilizing ($\mathrm{O}-\mathrm{P}-\mathrm{Cl}$) anomeric interaction ${ }^{8}$ and the destabilizing four-electron antiperiplanar relationship ${ }^{9}$ (Scheme 4).
The addition of phosphorochloridite trans-3 to a solution of phenol and triethylamine at room temperature led exclusively to the phenyl phosphite trans-1. In spite

Scheme 4

$2 e$ - interaction (favorable)

of the fact that the trans configuration of the product 1 suggests a reaction with retention of configuration, the results were explained by proposing a $\mathrm{S}_{\mathrm{N}} 2 \mathrm{P}$ type of mechanism ${ }^{10}$ as in the case of the alkyl phosphites, followed by isomerization of cis-1 to trans-1 provoked by the slight acidity of the triethylammonium chloride which is a byproduct of the reaction.
In order to avoid the acidic medium, the synthesis of cis-1 was performed with sodium phenoxide (generated from phenol and sodium) in anhydrous ethyl ether at room temperature; however, the trans-1 isomer was again obtained as a single product.
The reaction between phosphorochloridites and phenoxide ion is an exothermic reaction $\left(\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}\right.$ of $\mathrm{P}-\mathrm{Cl}=$ $78.5 \mathrm{kcal} / \mathrm{mol}$ vs $\Delta H_{\mathrm{f}}{ }^{\circ} 298$ of $\left.\mathrm{P}-\mathrm{O}=142.3 \mathrm{kcal} / \mathrm{mol}\right) .^{11}$ At high temperatures, cis alkyl phosphites ${ }^{12}$ and their thio analogs ${ }^{13}$ epimerized at the phosphorus center to the more stable trans diastereomers. The phosphorochloridite trans-3 was then reacted with phenol in triethylamine (TEA) at $-78{ }^{\circ} \mathrm{C}$ under a modified Lucas procedure. ${ }^{4 \mathrm{a}}$ Unfortunately, we were not able to detect the cis- $\mathbf{1}$ isomer even when using sodium phenoxide.

During several experiments in which we changed the concentration as well as the sequence of addition of the reactants and temperatures, we found that an excess of phenoxide also precluded formation of the cis phosphite. This result can be explained by postulating a second attack of the phenoxide ion on cis-1 in an early transition state, following an antiperiplanar pathway, ${ }^{14 a}$ which produces the thermodynamically more stable trans-1 diastereomer. The thermal equilibration of cis-1 to trans- 1 led to a value of $\Delta G^{\circ}($ neat $)=2.1 \mathrm{kcal} / \mathrm{mol}$ at 80 ${ }^{\circ} \mathrm{C}^{14 \mathrm{c}}$ (Scheme 5).

[^1]

Table 1. ${ }^{1} \mathrm{H}$ NMR Chemical Shifts (in ppm) for Thionophosphates 5 and 6 in CDCl_{3}

chemical shifts	compound			
	r-cis-5	r-trans- $\mathbf{5}$	eq-cis- $\mathbf{6}$	ax-cis- $\mathbf{6}$
$\delta_{\mathrm{H}_{4 \mathrm{a}}}$	4.89	4.83	4.83	4.79
$\delta_{\mathrm{H}_{5 \mathrm{a}}}$	1.98	2.19	1.70	1.82
$\delta_{\mathrm{H}_{5 e}}$	1.90	1.81	1.89	1.88
$\delta_{\mathrm{H}_{6 \mathrm{a}}}$	4.61	4.59	4.83	4.79
$\delta_{\mathrm{H}_{6 \mathrm{e}}}$	4.42	4.42	-	-

In summary, by avoiding the excess of the phenoxide ion during the reaction at low temperature, ${ }^{15}$ we were able to obtain the cis-1 isomer exclusively. The procedure for the synthesis of cis-1 was successfully followed for the preparation of its analog, the equatorial 2 -phenoxy-cis-4,6-dimethyl- $1,3,2 \lambda^{3}$-dioxaphosphorinane (2). In the case of the 4,6-dimethyl phosphites, a mixture of meso and d, l diols ($84: 16$) was used as starting material. Therefore, formation of a small amount of the trans-4,6-dimethyl isomer (less than 10% as indicated in the Experimental Section) was unavoidable in the final phosphites.

Stereochemistry and Conformational Analysis. In order to confirm the assigned configuration of the phosphites 1 and 2, both were reacted with sulfur in a stereospecific manner ${ }^{16}$ to produce the corresponding thionophosphates 5 and 6, ${ }^{17}$ as described in the Experimental Section. ${ }^{1} \mathrm{H}$ NMR chemical shifts of these thionophosphates are presented in Table 1.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of phosphites 1 and 2 are presented in Tables 2 and 3, respectively.

[^2]Table 2. ${ }^{1} H$ NMR Backbone Coupling Constants (in Hertz) for Phosphites 1 and 2^{a}

coupling constants	compound			
	cis-1	trans-1	eq-cis-2	$a x-c i s-2$
${ }^{3} J_{\mathrm{H}_{4 \mathrm{a}}} \mathrm{H}_{5 \mathrm{a}}$	4.6	11.2	11.9	9.8
${ }^{3} J_{\mathrm{H}_{4 \mathrm{a}} \mathrm{H}_{5}}$	6.2	2.6	3.4	5.4
${ }^{3} J_{\mathrm{H}_{68}} \mathrm{H}_{5 \mathrm{a}}$	4.6	11.2	11.9	9.8
${ }^{3} J_{\mathrm{H}_{62}} \mathrm{H}_{5 \mathrm{e}}$	7.0	2.6	3.4	5.4
${ }^{3} J_{H_{66}} \mathrm{H}_{5 \mathrm{a}}$	8.3	4.6	-	-
${ }^{3} J_{\mathrm{H}_{66} \mathrm{H}_{5 \mathrm{e}}}$	4.0	2.3	-	$\overline{-}$
${ }^{3} J_{\mathrm{H}_{4 \mathrm{e}} \mathrm{H}_{a}}$	6.6	5.9	6.2	6.4
${ }^{3} J_{H_{60}} \mathrm{H}_{a}$	-	-	6.2	6.4
${ }^{2} J_{\mathrm{H}_{555}{ }^{\text {a }}}$	14.2	13.9	14.5	13.5
${ }^{2} J_{\mathrm{H}_{\text {6abe }}}$	11.2	10.8	-	-
${ }^{3} J_{\mathrm{H}_{4 \mathrm{a}} \mathrm{P}}$	3.3	2.6	3.4	2.0
${ }^{4} J_{\mathrm{H}_{5 \mathrm{P}} \mathrm{P}}$	1.3	-	1.3	1.0
${ }^{4} J_{\mathrm{H}_{58} \mathrm{P}}$	-	2.6	3.3	2.2
${ }^{3} J_{\mathrm{H}_{6 \mathrm{~B}} \mathrm{P}}$	8.3	2.6	3.4	2.0
${ }^{3} J_{\mathrm{H}_{6 \mathrm{e}} \mathrm{P}}$	3.3	10.8	-	-
${ }^{\text {a }}$ First-ord	alysi	CDCl_{3}.		

As expected, ${ }^{18}$ axial OPh phosphites have smaller ${ }^{3} J_{\text {P-ringc5 }}$ coupling constants than do the equatorial ones; i.e., the constant for cis-1 $=11.0 \mathrm{~Hz}$, the constant for trans $-1=4.4 \mathrm{~Hz}$, the constant for eq-cis-2 $=16.6 \mathrm{~Hz}$, and the constant for $a x$-cis- $2=3.3 \mathrm{~Hz}$.

First-order analysis of the ${ }^{1} \mathrm{H}$ NMR spectra and homonuclear decoupling experiments of trans-1, eq-cis-2, and $a x$-cis-2 indicated that in solution ($27{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) the 1,3,2-dioxaphosphorinane ring is in a preferred chair conformation. ${ }^{19 a}$
As shown in Scheme 6 for isomeric phosphites 2, the methylene and methine protons of the ring comprise ABM_{2} systems centered at $\delta 1.85,2.45$, and 4.38 ppm , respectively, for eq-cis-2 and $\delta 1.66,1.73$, and 4.73 ppm , respectively, for ax-cis-2. Irradiation at $1.37 \mathrm{ppm}\left(\mathrm{CH}_{3}\right.$'s at C_{4} and C_{6}) for eq-cis-2 led to decoupling of the methine multiplet to a double of triplets (dt) with ${ }^{3} J_{\mathrm{HH}}=11.9$ and 3.4 Hz and ${ }^{3} J_{\mathrm{HP}}=3.4 \mathrm{~Hz}$. On the other hand, irradiation at $1.24 \mathrm{ppm}\left(\mathrm{CH}_{3}\right.$'s at C_{4} and $\left.\mathrm{C}_{6}\right)$ for ax-cis-2 led to decoupling of the methine multiplet to a doublet of double doublets (ddd) with ${ }^{3} J_{\mathrm{HH}}=9.8$ and 5.4 Hz and ${ }^{3} J_{\mathrm{HP}}=$ $2.0 \mathrm{~Hz}{ }^{19 \mathrm{~b}}$ Some other coupling constants are shown in Table 2.

For trans-1, the methylene and methine protons comprise an $\mathrm{ABMM}{ }^{\prime} \mathrm{N}$ system (Scheme 6) centered at $\delta 1.67$, $2.13,3.92,4.63$, and 4.76 ppm . The integrated spectrum indicated that each multiplet was attributable to a single proton. Signals at 1.67 and 2.13 ppm were assigned to methylene A and B protons and signals at 4.63 and 3.92 ppm to methylene M and N protons, and the signal at 4.76 ppm was assigned to the methine M^{\prime} proton. In the

[^3]homonuclear decoupling experiment, on irradiation at $1.27 \mathrm{ppm}\left(\mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{4}\right)$, the multiplet around 4.76 ppm was found to decouple to a doublet of triplets with ${ }^{3} J_{\mathrm{HH}}=11.2$ and 2.6 Hz and ${ }^{3} J_{\mathrm{PH}}=2.6 \mathrm{~Hz}$. By irradiation at the N proton at 3.92 ppm , the doublet of quintuplets at 1.67 ppm was collapsed to a doublet of quartets (${ }^{3} J_{\mathrm{HH}}=13.9$, 2.6 , and 2.6 Hz and ${ }^{4} J_{\mathrm{PH}}=2.6 \mathrm{~Hz}$); therefore, the signal was assigned to $\mathrm{H}_{5 \mathrm{e}}$. The multiplet at 2.13 ppm was collapsed to a broad quartet ($J=13.9,11.2$, and 11.2 Hz), so the signal was assigned to $\mathrm{H}_{5 \mathrm{a}}$. Selective irradiation of A and B signals led to the determination of the other coupling constants ${ }^{3} J_{\mathrm{H}_{e} \mathrm{P}}=10.8 \mathrm{~Hz}$ for $\mathrm{H}_{6 \mathrm{e}}$ and ${ }^{3} J_{\mathrm{H}_{a} \mathrm{P}}=$ 2.6 Hz for $\mathrm{H}_{6 \mathrm{a}}$, as shown in Table 2. The assignment and all coupling constants strongly support a chair conformation for trans-1. ${ }^{19 a}$

On the other hand, first-order analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum and a homonuclear decoupling experiment of cis- 1 suggest that the conformation of the six-membered ring is not a chair but a predominant twist conformation. As illustrated in Scheme 6, the methylene and methine protons of the ring of cis-1 comprise an ABMM'N system with multiplets centered at $\delta 2.1,2.28,4.02,4.39$, and 4.54 ppm . The integrated spectrum of cis-1 indicated that each multiplet was attributable to a single proton. Signals at 2.1 and 2.28 ppm were assigned to methylene A and B protons and signals at 4.02 and 4.54 ppm to methylene M and N protons, and the signal at 4.39 ppm was assigned to the methine M^{\prime} proton. On irradiation at $1.51 \mathrm{ppm}\left(\mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{4}\right)$, the multiplet at 4.39 ppm was found to decouple. Irradiation at 4.54 ppm resulted in collapse of the multiplet at 2.28 ppm into an apparent dt with $J=14.2,4.6$, and 4.6 Hz , split by long-range coupling $J=1.3 \mathrm{~Hz}$, and collapse of the multiplet at 2.1 ppm into a ddd with $J=14.2,7.3$, and 4.6 Hz . Irradiation at $\delta 2.28 \mathrm{ppm}$ resulted in collapse of the multiplet at 4.54 ppm into an apparent dt with $J=11.2,4.0$, and 3.3 Hz , collapse of the multiplet at 4.39 ppm into another multiplet with $\mathrm{J}=6.7,6.2$, and 3.3 Hz , and collapse of the multiplet at 4.02 ppm into a ddd with $J=11.2,7.9$, and $4.6 \mathrm{~Hz} .{ }^{20}$ The Altona calculated coupling constants ${ }^{21}$ of cis-1 suggested also that the conformation of the sixmembered ring in this case is not a chair but a predominant twist conformation as shown in Scheme 7. ${ }^{22,23}$

In tricovalent P derivatives, the ${ }^{2} J_{\mathrm{PC}}$ coupling constant is dominated by the proximity of the phosphorus lone pair to the coupled carbon atom. In general, coupling is large when the lone pair is close and it is quite small when remote. ${ }^{18 \mathrm{a}}$ The lack of a coupling constant ${ }^{2} J_{\mathrm{PC}_{6}}$ compared with the ${ }^{2} J_{\mathrm{PC}_{4}}=5.5 \mathrm{~Hz}$ for cis-1 (Table 3) supports a twist conformation, as that proposed in Scheme 7, ${ }^{24}$ as the major component of an equilibrium of twist-boat conformations where the chair conformation is not likely.

[^4]Table 3. Room-Temperature ${ }^{13} \mathrm{C}$ NMR Signal Assignments in Phosphites 1 and 2^{a}

compound	C_{4}	C_{5}	C_{6}	$\mathrm{C}_{4 \alpha}$	$\mathrm{C}_{6 \alpha}$	$\mathrm{C}_{1}{ }^{\prime}$	$\mathrm{C}_{2^{\prime}, 6^{\prime}}$	$\mathrm{C}_{3^{\prime} 5^{\prime}}$	C_{4}
cis-1	$\begin{gathered} 69.92 \\ (5.5) \end{gathered}$	$\begin{gathered} 32.55 \\ (11.0) \end{gathered}$	58.3	22.9	-	$\begin{gathered} 152.92 \\ (7.7) \end{gathered}$	119.93	123.06	129.56
trans-1	66.38	35.47	60.25	22.85	-	b	119.64	129.59	123.07
	(2.2)	(4.4)	(2.2)	(3.3)			(7.7)		
$e q-c i s-2$	71.09	40.1	71.09	23.84	23.84	153.03	120.2	129.5	122.94
	(6.6)	(16.6)	(6.6)			(6.6)	(7.7)		
ax-cis-2	66.78	42.67	66.78	22.71	22.71	152.92	119.62	129.56	122.98
	(3.3)	(3.3)	(3.3)	(2.2)	(2.2)	(7.7)	(7.7)		

${ }^{a}$ Chemical shift (δ) in ppm from TMS in $\mathrm{CDCl}_{3} . J_{\mathrm{PC}}$ in parentheses in hertz. ${ }^{b}$ The signal was not observed.
Scheme 6

1

2

Scheme 7

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{HH}}=6.2 \mathrm{~Hz}=46^{\circ} \\
& \mathrm{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}=-43^{\circ}
\end{aligned}
$$

$\mathrm{J}_{\mathrm{HH}}=4.0 \mathrm{~Hz}=-129^{\circ}$

The undecoupled ${ }^{31} \mathrm{P}$ NMR spectrum of cis-1 ($\delta 125.24$ ppm , broad signal) also confirmed that cis-1 was not in a single chair conformation as in the case of its isomer trans-1 ($\delta 122.2 \mathrm{ppm}$, doublet with ${ }^{3} J_{\mathrm{PH}}=11.1 \mathrm{~Hz}$). From Table 2, the sum ${ }^{3} J_{\mathrm{H}_{6} \mathrm{P}}+{ }^{3} J_{\mathrm{H}_{6 \mathrm{a}} \mathrm{P}}$ is 13.4 Hz for trans-1 and 11.6 Hz for cis-1, the latter value being lower than what was expected for a chair conformation (12.6-13.9 $\mathrm{Hz}) .{ }^{25}$

The analyses at low temperatures of cis-1, trans-1, eq$c i s-2$, and $a x-c i s-2$ were performed in toluene- d_{8} by ${ }^{31} \mathrm{P}$ NMR. No decoalescence was observed in any case; however, the temperature dependance of the chemical shift and half-widths $v_{1 / 2}$ suggest that the cis OPh isomer in the 4-methyl series consists of a mixture of conformers in mobile equilibrium (Table 4). A broader and upfieldshifted signal for cis-1 was observed, compared with the same in trans $-1\left(v_{1 / 2}\right.$ at $-90^{\circ} \mathrm{C}-v^{\circ}{ }_{1 / 2}$ is equal to 14.1 Hz for cis-1 and equal to 11.3 Hz for trans $\mathbf{- 1} ;(\Delta \delta)_{27-90^{\circ} \mathrm{C}}$ is 1.23 ppm for cis-1 and 0.48 ppm for trans-1). On the other hand, eq-cis-2 presented a large upfield shift at low temperaures $\left((\Delta \delta)_{27 \rightarrow-90^{\circ} \mathrm{C}}=1.94 \mathrm{ppm}\right)$; however the lack of a significant change in the half-widths $v_{1 / 2}$ of the signal (i.e., $v_{1 / 2}$ at $-90^{\circ} \mathrm{C}-v^{\circ}{ }_{1 / 2}=2.8 \mathrm{~Hz}$) allows us to discard the contribution of more than one conformation for this molecule.

Conclusion

A method for the synthesis of six-membered ring phosphites with equatorial OPh was found. In these phenyl phosphites, a single methyl group on the equatorial position at C_{4} is not enough to lock the conformation

[^5]Table 4. The Dynamic Exchange Half-Width ($v_{1 / 2}$) in Hertz ${ }^{a}$ and Chemical Shift ${ }^{b, c}$ of ${ }^{31} P$ NMR signals for Phosphites 1 and 2

	compound			
temp $\left({ }^{\circ} \mathrm{C}\right)$	cis-1	trans- $\mathbf{1}$	eq-cis- $\mathbf{2}$	$a x$-cis-2
27	5.4^{d}	4.3^{d}	5.3^{d}	3.6^{d}
	(125.41)	(122.59)	(124.46)	(120.5)
-20	14.3	12.5	-	-
	(124.88)	(122.39)		
-30	-	-	7.1	4.0
			(123.59)	(120.2)
-60	16.4	14.9	-	-
	(124.46)	(122.22)	-	-
-80	16.7	15.4	-	
	(124.28)	(122.15)	8.1	6.3
-90	19.5	15.6	(122.52)	(119.87)

${ }^{a}$ Estimated error in values is $\pm 1.2 \mathrm{~Hz} .{ }^{b}$ Spectra in toluene- d_{8}. ${ }^{c}$ Chemical shift (δ) in parentheses in ppm from external $\mathrm{H}_{3} \mathrm{PO}_{4}$. ${ }^{d}$ These values could be considered as the line width due to spinspin relaxation ($v^{\circ}{ }_{1 / 2}$) for each compound because, at $27^{\circ} \mathrm{C}$, the signals are sharp, indicating that at this temperature the process is at the fast exchange limit: Macomber, R. S. NMR Spectroscopy. Basic Principles and Applications; Harcourt Brace Jovanovich Publishers: New York, 1988; p 174.
of the equatorial isomer because it has to compete with the axial preference of the OPh group on phosphorus in addition to the destabilizing four-electron $n_{O}-n_{P}$ stereoelectronic interaction.

The axial and equatorial OPh cis-4,6-dimethyl phosphites are, on the contrary, potentially conformational homogeneous systems with predominant chair conformations.

Experimental Section

Spectral Analyses. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured in CDCl_{3} at 270 and 67.5 Hz , respectively, and are referenced to internal $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$. ${ }^{31} \mathrm{P}$ NMR spectra were recorded at 109.25 MHz in CDCl_{3} and are reported in ppm downfield (+) from external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. Low-temperature NMR analyses of $\mathbf{1}$ and $\mathbf{2}$ were performed in toluene- d_{8}. The mass spectrometry analyses were obtained at 70 eV .

Syntheses. Cyclic phosphites trans-1 and ax-cis-2 were synthesized according to a literature procedure ${ }^{4 a}$ using phosphorus trichloride and the corresponding diols. The resulting phosphorochloridites trans-3 and ax-cis-4 were purified by distillation and reacted with phenol in triethylamine. The cis isomers 1 and 2 were obtained by careful addition of the triethylamine to a mixture of the corresponding phosphorochloridite trans-3 and trans-4, respectively, and phenol. Moreover, compounds should be treated carefully since some are powerful phosphorylating agents.

Phosphites 1 and 2 were analyzed in crude form since the attempts at purification failed. ${ }^{26 \mathrm{a}}$ Column chromatography of the cis isomers under nitrogen using mixtures of hexane and ethyl acetate as the eluent caused an isomerization to the trans diastereomer and decomposition. The distillation of the trans- $\mathbf{1}$ and ax-cis-2 isomers, on the other hand, at ca. $80^{\circ} \mathrm{C} /$ 1.3 mmHg led to decomposition.
trans-2-Chloro-4-methyl-1,3,2 $2{ }^{3}$-dioxaphosphorinane (3). A racemic (\pm)-mixture of 1,3-butanediol ($18.8 \mathrm{~mL}, 210 \mathrm{mmol}$) was added dropwise to a solution of 19.5 mL of phosphorus trichloride (223.5 mmol) in 50 mL of methylene chloride at room temperature under nitrogen. The product was distilled under vacuum ($32{ }^{\circ} \mathrm{C} / 2.8 \mathrm{mmHg}$) until the residue turned orange. The product was kept under nitrogen and refrigerated until it was used: yield $19.1 \mathrm{~g}, 59 \% ;{ }^{1} \mathrm{H}$ NMR $\delta 1.30$ (d, $J=$ $5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.74\left(\mathrm{dm}, J=13.9,4.6,4.0 \mathrm{~Hz}, J_{\mathrm{HP}}=2.0 \mathrm{~Hz}, 1\right.$ H), $2.15\left(\mathrm{~m}, J=13.9,4.6 \mathrm{~Hz}, J_{\mathrm{HP}}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05(\mathrm{tdd}, J$ $\left.=10.5,4.0 \mathrm{~Hz}, J_{\mathrm{HP}}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.65(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.44\left(\mathrm{~d}, J_{\mathrm{CP}}=2.2 \mathrm{~Hz}\right), 35.14\left(\mathrm{~d}, J_{\mathrm{CP}}=4.4 \mathrm{~Hz}\right)$, $62.01\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right), 68.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\delta 151.9$ (s).
trans-2-Phenoxy-4-methyl-1,3,2 λ^{3}-dioxaphosphorinane (1). To a solution of $3.78 \mathrm{~g}(40.21 \mathrm{mmol})$ of phenol and 96 mL of anhydrous $\mathrm{Et}_{2} \mathrm{O}$, under nitrogen, was added dropwise $5.76 \mathrm{~mL}(41.33 \mathrm{mmol})$ of triethylamine. After 30 min , the phosphorochloridite trans-3 ($6 \mathrm{~g}, 38.83 \mathrm{mmol}$) was added dropwise to the mixture while it was stirred under nitrogen for an additional 30 min . The mixture was then filtered, and the solvent was removed (heated rotary evaporator) until no traces were found to afford $7.15 \mathrm{~g}(87 \%)$ of an oil containing $86-93 \%$ of the compound: ${ }^{26}{ }^{1} \mathrm{H}$ NMR $\delta 1.26$ (d, 3 H), 1.67 (dm, $1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 3.92$ (tdd, 1 H$), 4.63(\sim \mathrm{tt}, 1 \mathrm{H}), 4.76(\sim \mathrm{q}$, $1 \mathrm{H}), 7.05-7.21(\mathrm{~d}, 3 \mathrm{H}), 7.14-7.41$ (m, 2 H); ${ }^{31} \mathrm{P}$ NMR $\delta 122.2$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{PH}}=11.1 \mathrm{~Hz}\right) ; \mathrm{MS} m / z 212\left(\mathrm{M}^{+}\right), 159\left(\mathrm{M}^{+}-53\right), 140\left(\mathrm{M}^{+}\right.$ $-72), 119\left(\mathrm{M}^{+}-93\right), 94\left(\mathrm{M}^{+}-118\right), 77\left(\mathrm{M}^{+}-135\right), 55\left(\mathrm{M}^{+}\right.$ - 157).
cis-2-Phenoxy-4-methyl-1,3,2 λ^{3}-dioxaphosphorinane (1). To a solution of 1 g (6.47 mmol) of the phosphorochloridite trans-3, 0.63 g (6.7 mmol) of phenol, and 16 mL of anhydrous ethyl ether under nitrogen at $-78{ }^{\circ} \mathrm{C}$ was added slowly dropwise $0.96 \mathrm{~mL}(6.89 \mathrm{mmol})$ of triethylamine. When the addition was complete, the resultant triethylammonium chloride was filtered off, and the solvent was removed with a rotary evaporator without heating. Traces of solvent were removed under reduced pressure to afford $1.11 \mathrm{~g}(81 \%)$ of an oily product containing $86-90 \%$ of the compound: ${ }^{26}{ }^{1} \mathrm{H}$ NMR $\delta 1.51$ ($\mathrm{d}, 3$ $\mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H})$, $4.54(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, 3 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR $\delta 125.24$ (broad signal).
r-2-Phenoxy-2-thio-trans-4-methyl-1,3,2 λ^{5}-dioxaphosphorinane (5). To a solution of $1.03 \mathrm{~g}(4.86 \mathrm{mmol})$ of phosphite trans -1 and 5 mL of carbon disulfide was added 0.16 g (5.0 mmol) of sulfur powder. After the suspension was stirred for 30 min , the excess of sulfur was filtered off, and the solvent was removed with a rotary evaporator to afford a solid 0.99 g (86%). Recrystallization from 80% hexanes/ethyl acetate solution yield $0.71 \mathrm{~g}(62 \%)$ of needles ($\mathrm{mp} 70-72^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR $\delta 1.47(\mathrm{~d}, 3 \mathrm{H}), 1.81(\mathrm{dm}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 4.42$ (dddd, 1 H), $4.59(\sim \mathrm{tt} 1 \mathrm{H}), 4.83(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 3 \mathrm{H}), 7.35$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.01\left(\mathrm{~d}, J_{\mathrm{CP}}=8.9 \mathrm{~Hz}\right), 32.61\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $5.5 \mathrm{~Hz}), 68.04\left(\mathrm{~d}, J_{\mathrm{CP}}=9.9 \mathrm{~Hz}\right), 77.11\left(\mathrm{~d}, J_{\mathrm{CP}}=8.8 \mathrm{~Hz}\right), 119.87$ $\left(\mathrm{d}, J_{\mathrm{CP}}=5.5 \mathrm{~Hz}\right), 124.84(\mathrm{~s}), 129.43(\mathrm{~s}), 150.38\left(\mathrm{~d}, J_{\mathrm{CP}}=6.6\right.$ Hz); ${ }^{31} \mathrm{P}$ NMR $\delta 55.81\left(\mathrm{~d}, J_{\mathrm{PH}}=24.7 \mathrm{~Hz}\right.$) (these data are consistent with previously reported values ${ }^{28}$); MS $m / z 244$ $\left(\mathrm{M}^{+}\right), 190\left(\mathrm{M}^{+}-54\right), 110\left(\mathrm{M}^{+}-134\right), 94\left(\mathrm{M}^{+}-150\right), 77\left(\mathrm{M}^{+}\right.$ - 167).
r-2-Phenoxy-2-thio-cis-4-methyl-1,3,2玍-dioxaphosphorinane (5). To a solution of $1.03 \mathrm{~g}(4.86 \mathrm{mmol})$ of the phosphite cis-1 and 5 mL of carbon disulfide under nitrogen at $-78{ }^{\circ} \mathrm{C}$ was added $0.16 \mathrm{~g}(5.0 \mathrm{mmol})$ of sulfur powder. After the mixture was stirred for 7 h at $-78^{\circ} \mathrm{C}$, the excess of sulfur was filtered off, and the solvent was removed with a rotary evaporator. The oily residue was chromatographed on silica gel using a 90% hexanes/ethyl acetate solution to give 0.81 g of the corresponding thionophosphate (70%). A small amount

[^6]of the sample was distilled under reduced pressure: $\mathrm{bp} 86^{\circ} \mathrm{C} / 3$ mmHg ; ${ }^{1} \mathrm{H}$ NMR $\delta 1.44(\mathrm{dd}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H})$, 4.42 (qt, 1 H$), 4.61$ (m, 1 H$), 4.89$ (m, 1 H$), 7.21$ (d, 3 H$), 7.35$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.0\left(\mathrm{~d}, J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right), 33.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.6\right.$ $\mathrm{Hz}), 66.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.5 \mathrm{~Hz}\right), 76.4\left(\mathrm{~d}, J_{\mathrm{CP}}=5.5 \mathrm{~Hz}\right), 117.2(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=7.4 \mathrm{~Hz}\right), 125.5(\mathrm{~s}), 129.6(\mathrm{~s}), 150.5\left(\mathrm{~d}, J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\delta 60.03\left(\mathrm{~d}, J_{\mathrm{HP}}=22 \mathrm{~Hz}\right)$ (these data are consistent with previously reported values ${ }^{28}$); MS $m / z 244\left(\mathrm{M}^{+}\right), 190\left(\mathrm{M}^{+}-\right.$ 54), $110\left(\mathrm{M}^{+}-134\right), 94\left(\mathrm{M}^{+}-150\right), 77\left(\mathrm{M}^{+}-167\right), 55\left(\mathrm{M}^{+}-\right.$ 189).
meso-2,4-Pentanediol. A mixture of meso- and d, l-pentanediols (50:50) was obtained from acetyl acetone and sodium borohydride. A meso-enriched mixture (84%) was also obtained following the procedure in the literature. ${ }^{29}$

2-Chloro-4,6-dimethyl-1,3,2 λ^{3}-dioxaphosphorinane (4). This compound was prepared by reaction between a mixture of $5 \mathrm{~g}(48.0 \mathrm{mmol})$ of meso- and d, l-pentanediols ($84: 16$) and 4.19 mL (48.02 mmol) of phosphorus trichloride in 20 mL of methylene chloride following the procedure described for trans3. The product was distilled at $40^{\circ} \mathrm{C} / 4 \mathrm{mmHg}$, affording 5 g (62%) of a mixture of axial chloro-cis-4,6-dimethyl and axial chloro-trans-4,6-dimethyl 4 in a 92.4:7.6 ratio. The product was kept under nitrogen and refrigerated until it was used. $a x$-cis-4: ${ }^{1} \mathrm{H}$ NMR $\delta 1.29(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.78(\mathrm{~m}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.8(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~m}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.21\left(\mathrm{~d}, J_{\mathrm{CP}}=2.2 \mathrm{~Hz}, 2 \mathrm{C}\right), 42.28\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right)$, $69.36\left(\mathrm{~d}, J_{\mathrm{CP}}=3.3 \mathrm{~Hz}\right.$); ${ }^{21} \mathrm{P}$ NMR $\delta 148.68$ (s), ax-trans-4: ${ }^{31} \mathrm{P}$ NMR $\delta 150.37$ (s).
$\boldsymbol{a x}$-2-Phenoxy-cis-4,6-dimethyl-1,3,2 λ^{3}-dioxaphosphorinane (2). This compound was prepared by reaction of 2.1 g (12.46 mmol) of a mixture of ax-cis- and ax-trans-4 in a 92.4: 7.6 ratio with 1.36 g (14.47 mmol) of phenol, $2.02 \mathrm{~mL}(14.49$ mmol) of triethylamine, and 14.5 mL of anhydrous ethyl ether as described for trans-1. A crude yield of $2.2 \mathrm{~g}(78 \%)$ of an oily product contained $85-90 \%{ }^{26}$ of a mixture: 93.5% ax-cis- 2 and 6.5% ax-trans-2. ax-cis-2: ${ }^{1} \mathrm{H}$ NMR $\delta 1.24$ (d, 6 H), 1.66 $(\mathrm{m}, 2 \mathrm{H}), 4.73(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, 3 \mathrm{H}), 7.3(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR δ $120.3(\mathrm{~s})$. ax-trans-2: ${ }^{31} \mathrm{P}$ NMR $\delta 123.8\left(\mathrm{~d}, J_{\mathrm{PH}}=11.0 \mathrm{~Hz}\right.$).
eq-2-Phenoxy-cis-4,6-dimethyl-1,3,2 $2 \lambda^{3}$-dioxaphosphorinane (2). This compound was prepared by reaction of 1.03 g (6.11 mmol) of a mixture of ax-cis- and ax-trans-4 in a 92.4 : 7.6 ratio with $0.58 \mathrm{~g}(6.17 \mathrm{mmol})$ of phenol, $0.87 \mathrm{~mL}(6.24$ mmol) of triethylamine, and 14 mL of anhydrous ethyl ether as described for cis-1. A crude yield of $1.13 \mathrm{~g}(82 \%)$ of an oily product contained $89-92 \%^{26}$ of a mixture of the eq-cis- and ax-trans-2 (93:7). eq-cis-2: ${ }^{1} \mathrm{H}$ NMR $\delta 1.37$ (d, 6 H), 1.85 (dq, $1 \mathrm{H}), 2.45(\sim \mathrm{q}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, 3 \mathrm{H}), 7.3(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{31} \mathrm{P}$ NMR $\delta 124.66$ (s).
ax-2-Phenoxy-2-thio-cis-4,6-dimethyl-1,3,2 $2 \lambda^{5}$-dioxaphosphorinane (6). This compound was prepared by reaction of $1.0 \mathrm{~g}(4.42 \mathrm{mmol})$ of a mixture of ax-cis- and ax-trans-4 in a $92.7: 7.3$ ratio with $0.14 \mathrm{~g}(4.42 \mathrm{mmol})$ of sulfur powder in 4.7 mL of carbon disulfide as described for r-trans-5. A crude yield of 0.95 g (83%) was obtained. ax-cis- 6 was purified by recrystallization from 85% hexanes/ethyl acetate solution to give $0.69 \mathrm{~g}(60 \%): \mathrm{mp} 120-122{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.43(\mathrm{~d}, 3 \mathrm{H})$, $1.82(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}), 7.35$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.88\left(\mathrm{~d}, J_{\mathrm{CP}}=9.9 \mathrm{~Hz}\right), 39.92\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $4.4 \mathrm{~Hz}), 76.19\left(\mathrm{~d}, J_{\mathrm{CP}}=8.8 \mathrm{~Hz}\right), 119.79\left(\mathrm{~d}, J_{\mathrm{CP}}=5.5 \mathrm{~Hz}\right), 124.71$ (s), $129.38(\mathrm{~s}), 150.46\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right.$); ${ }^{31} \mathrm{P}$ NMR $\delta 55.66$; MS $\mathrm{m} / \mathrm{z} 258\left(\mathrm{M}^{+}\right), 217\left(\mathrm{M}^{+}-41\right), 191\left(\mathrm{M}^{+}-67\right), 172\left(\mathrm{M}^{+}-86\right)$, $94\left(\mathrm{M}^{+}-164\right), 69\left(\mathrm{M}^{+}-189\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{PS}$: $\mathrm{C}, 51.16 ; \mathrm{H}, 5.85$. Found: C, $50.45 ; \mathrm{H}, 5.92$.
eq-2-Phenoxy-2-thio-cis-4,6-dimethyl-1,3,2每-dioxaphosphorinane (6). This compound was prepared by reaction of $0.4 \mathrm{~g}(1.76 \mathrm{mmol})$ of a mixture of eq-cis- and ax-trans-4 in a 92.9:7.1 ratio with $0.057 \mathrm{~g}(1.78 \mathrm{mmol})$ of sulfur powder in 2.0 mL of carbon disulfide as described for r-cis-5; this reaction produced crude yield of $0.38 \mathrm{~g}(84 \%)$. The residue was chromatographed on silica gel using a 90% hexanes/ethyl acetate solution to give $0.34 \mathrm{~g}(75 \%)$ of eq-cis-6. A little amount of the sample was distilled under reduced pressure: $\mathrm{bp}=91$ ${ }^{\circ} \mathrm{C} / 1.6 \mathrm{mmHg} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.39(\mathrm{~d}, 3 \mathrm{H}), 1.70(\sim \mathrm{dt}, 1 \mathrm{H}), 1.89$

[^7]$(\sim \mathrm{dq}, 1 \mathrm{H}), 4.83(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.1\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}\right), 41.03\left(\mathrm{~d}, J_{\mathrm{CP}}=4.4 \mathrm{~Hz}\right), 75.37$ $\left(\mathrm{d}, J_{\mathrm{CP}}=5.5 \mathrm{~Hz}\right), 121.32\left(\mathrm{~d}, J_{\mathrm{CP}}=4.4 \mathrm{~Hz}\right), 125.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.2\right.$ Hz), 129.46 (s); ${ }^{31} \mathrm{P}$ NMR $\delta 60.28$; MS $m / z 258\left(\mathrm{M}^{+}\right), 191\left(\mathrm{M}^{+}\right.$ $-67), 172\left(\mathrm{M}^{+}-86\right), 149\left(\mathrm{M}^{+}-109\right), 94\left(\mathrm{M}^{+}-164\right), 69\left(\mathrm{M}^{+}\right.$ - 189). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{PS}: \mathrm{C}, 51.16 ; \mathrm{H}, 5.85$. Found: C, 51.44; H, 5.98 .

Acknowledgment. We are grateful to Prof. L. D. Quin as well as the reviewers for helpful comments. This work was supported by CONACYT (México) Grant D111-904288.

JO941296S

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, July 15, 1995.
 (1) Lucas, W. J.; Mitchell, F. W.; Scully, C. N. J. Am. Chem. Soc. 1950, 72, 5491.
 (2) Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison G. A Conformational Analysis; Interscience Publishers, Wiley: New York, 1965; p 152.
 (3) Denney, D. Z.; Denney, D. B. J. Am. Chem. Soc. 1966, 88, 1830. (4) (a) Asknes, G.; Ericksen, R.; Melligen, K. Acta Chem. Scand. 1967, 21, 1028. (b) Gagnaire, D.; Robert, J. B.; Verrier, J. Bull. Soc. Chim. Fr. 1968, 2392. (c) Hargis, J. H.; Bentrude, W. G. Tetrahedron Lett. 1968, 5365. (d) Rodgers, J.; White, D. W.; Verkade, J. G. Tetrahedron Lett. 1968, 5369. (e) Bodkin, C.; Simpson, P. Chem. Commun. 1969, 829. (f) Albrand, J. P.; Gagnaire, D.; Robert, J. B. Haemers, M. Bull. Soc. Chim. Fr. 1969, 3496. (g) Bentrude, W. G.; Hargis, J. H. J. Am. Chem. Soc. 1970, 92, 7136. (h) Bentrude, W.; Yee, K. C. Tetrahedron Lett. 1970, 3999. (i) Cox, R. H.; Newton, G.; Campbell, B. S. J. Am. Chem. Soc. 1971, 93, 528. (j) Rodgers, J.; White, D. W.; Verkade, J. G. J. Chem. Soc. A 1971, 77. (k) Haemers, M. Ottinger, R.; Reisse, J.; Zimmerman, D. Tetrahedron Lett. 1971, 461. (1) Bentrude, W. G.; Tan, H.-W.; Yee, K. C. J. Am. Chem. Soc. 1975, 97, 573.
 (5) Gordillo, B.; Eliel, E. L. J. Am. Chem. Soc. 1991, 113, 2172.
 (6) Gordillo, B.; Garduño, C.; Guadarrama, G.; Eliel, E. L. Alkaline Hydrolysis of Six-Membered Cyclic Phenyl S-Phosphates. The ThioloThiono Rearrangement. Abstracts of Papers, 207th ACS National Meeting of the American Chemical Society, San Diego, CA, March 1317, 1994; American Chemical Society: Washington, DC, 1984; ORG 112.
 (7) (a) The analog cis-2-methoxy-1,3,2 λ^{3}-dioxaphosphorinane has been claimed on the basis of NMR to be 70% diequatorial chair and the rest diaxial chair or boat. See ref 7b. (b) Eliel, E. L.; Chandrasekaran, S.; Carpenter, L. E., II; Verkade, J. G. J. Am. Chem. Soc. 1986 108, 6651 and references cited therein.

[^1]: (8) (a) Mosbo, J. A.; Verkade, J. G. J. Am. Chem. Soc. 1973, 95, 4659. (b) Hodges, R. V.; Houle, F. A.; Beauchamp, J. L.; Montag, R. A.; Verkade, J. G. J. Am. Chem. Soc. 1980, 102, 932. (c) Verkade, J. G. Phosphorus Sulfur 1976, 2, 251. (d) Hudson, R. F.; Verkade, J. G. Tetrahedron Lett. 1975, 3231. See also the stereoelectronic effects in phosphates: Tatcher, G. R. J.; Kluger, R. In Advances in Physical Organic Chemistry; Bethell, D., Ed.; Academic Press: New York, 1989; Vol. 25, p 99. Van Nuffel, P.; Van Alsenoy, C.; Lenstra, A. T. H.; Geise, H. J. J. Mol. Struct. 1984, 125, 1. Gorenstein, D. G. Chem. Rev. 1987, 87, 1047.
 (9) In acyclic phosphites, a lone pair on oxygen antiperiplanar to the phosphite lone pair raises the energy of the molecule by $3.3 \mathrm{kcal} /$ mol relative to a phosphite conformation with no antiperiplanar fourelectron interaction: Taira, K.; Gorenstein, D. G. J. Am. Chem. Soc. 1984, 106, 7825.
 (10) For similar types of mechanisms, see: (a) Hudson, R. F.; Keay, L. J. Chem. Soc. 1956, 2463. (b) White, D. W.; Bertrand, R. D.; McEwen, G. K.; Verkade, J. G. J. Am. Chem. Soc. 1970, 92, 7125.
 (11) The ΔH_{f} values were taken from: Dean, J. A. Handbook of Organic Chemistry; McGraw Hill Book Co.: New York, 1987; pp 3-25. (12) (a) Dutasta, J. P.; Grand, A.; Robert, J. B.; Taieb, M. Tetrahedron Lett. 1974, 2659. (b) Maryanoff, B. E.; Hutchins, R. O.; Maryanoff, C. A. Top. Stereochem. 1979, 11, 187.
 (13) (a) Hutchins, R. O.; Maryanoff, B. E. J. Am. Chem. Soc. 1972, 94, 3266. (b) Ninfant'ev, E. E.; Borisenko, A. A.; Zavalishina, A. I.; Sorokina, S. F. Dokl. Akad. Nauk SSSR 1974, 219, 881; Engl. Transl. 1974, 219, 839.

[^2]: (14) (a) See the stereoelectronic effects in transition states, for instance, in the glycoside hydrolysis: Deslongschamps, P. Pure Appl. Chem. 1993, 65, 1161. See it also in the α-effect (the enhanced nucleophilicity of a base possessing a heteroatom with an unshared electron pair ${ }^{14 \mathrm{~b}}$) in ref 9. (b) The α-effect is defined: Hoz, S.; Buncel, E. Isr. J. Chem. 1985, 24, 313. (c) Gordillo, B.; Guadarrama, G. Kinetics of Isomerization of cis Cyclic Six Membered Phenyl Phosphite Esters. In 1st J. Organomet. Chem. Conference on Applied Organometallic Chemistry; 1993; p 36.
 (15) If the reaction is carried out at room temperature, a mixture with the trans- 1 isomer predominant is obtained. The concentration of phenoxide during the reaction is controlled by the slow addition of TEA to a mixture of both reactants as indicated in the Experimental Section.
 (16) McEwen, W. E. Top. Phosphorus Chem. 1965, 2, 1. See also ref 12b.
 (17) Because of the participation of stereoelectronic effects in 1,3dioxaphosphorinanes, the conformation in the thionophosphates is expected to be different from that of the phosphites (see ref 12 b).

[^3]: (18) (a) Quin, L. D. In Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J. G., Quin, L. D., Eds.; VCH Publishers, Inc: Deerfield Beach FL, 1987; p 391. (b) Haemers, M.; Ottinger, R.; Zimmermann, D.; Reisse, J. Tetrahedron Lett. 1973, 2241. (c) Haemers, M.; Ottinger, R.; Zimmermann, D.; Reisse, J. Tetrahedron 1973, 29, 3539. (d) Ărbuzov, B. A.; Arshinova, R. P.; Mareev, Y. M.; Vinogradova, V. S. Dokl. Akad. Nauk SSSR 1973, 208, 849; Engl. Transl. 1973, 208, 77. (e) Eliel, E. L.; Pietrusiewicz, K. M. ${ }^{13} \mathrm{C}$ NMR of Nonaromatic Heterocyclic Compounds. Top. Carbon-13 NMR Spectrosc. 1979, 3, 171. (19) (a) The expected values for six-membered ring phosphites ${ }^{12 \mathrm{~b}}$ in chair conformations are ${ }^{3} J_{\mathrm{H}_{2} \mathrm{H}_{\mathrm{a}}}=11.2-11.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}_{\mathrm{a}} \mathrm{H}_{e}}=2.2-5.5$ $\mathrm{Hz},{ }^{3} J_{\mathrm{H}_{\mathrm{a}} \mathrm{P}}=1.7-4.6 \mathrm{~Hz}$, and ${ }^{3} J_{\mathrm{H}_{\mathrm{a}} \mathrm{P}}^{2}=8-10 \mathrm{~Hz}$. (b) The ${ }^{3} J_{\mathrm{HH}} \mathrm{H}_{\mathrm{HH}}$ values for ax-cis-2 are slightly deviate from what is expected for a chair conformation. These differences are hard to explain in terms of another conformation because they are at odds with the chair conformation suggested by the ${ }^{13} \mathrm{C}$ NMR spectra: $J_{\mathrm{P}\left(\mathrm{C}_{4 \mathrm{a}}\right)}=J_{\mathrm{P}\left(\mathrm{C}_{6 \mathrm{~s}}\right)}=2.2 \mathrm{~Hz}$ (Table 3). (c) For a similar analysis in phosphites, see: Kainosho, M.; Nakamura, A. Tetrahedron 1969, 25, 4071. Bodkin, C. L.; Simpson, P. J. Chem. Soc. B 1971, 1136. Bodkin, C.; Simpson, P. J. Chem. Soc., Chem. Commun. 1969, 829. Bergensen, K.; Albriktensen, P. Acta Chem. Scand. 1971, 25, 2257.

[^4]: (20) As noted, double irradiation experiments led to a coupling constant somewhat different ($\Delta J<2 \mathrm{~Hz}$) from those calculated from the single irradiated spectrum (Table 2). This might be a result of a rapid interconversion between twist conformations.
 (21) The conformation was calculated by using the Altona software: Cerda-Garcia-Rojas, C. M.; Zepeda, L. G.; Joseph-Nathan, P. Tetrahedron Comput. Methodol. 1990, 3, 113.
 (22) Bentrude et al. ${ }^{45}$ have calculated, by average ${ }^{1} \mathrm{H}$ NMR coupling constants, that the percentage of twist-boat form in trans-4-tert-butyl2 -methoxy- $1,3,2 \lambda^{3}$-dioxaphosphorinane is around 58%.
 (23) Despite numerous conformational studies, twist forms for analog phosphites are not unequivocally established: Nelson, K. A.; Sopchik, A. E.; Bentrude, W. G. J. Am. Chem. Soc. 1983, 105, 7752. Other high-energy conformations such as diaxial chair or boat in similar phosphites are nevertheless less likely. ${ }^{7}$
 (24) A Dreiding model of the twist conformation of cis- 1 shown in Scheme 7 indicated that the distance between the $P_{\text {lone pair }}$ and C_{6} is almost 20% longer than the distance between the $\mathrm{P}_{\text {lone pair }}$ and C_{4}.

[^5]: (25) (a) Bentrude, W. G.; Setzer, W. N. In Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J. G., Quin, L. D., Eds.; VCH Publishers, Inc: Deerfield Beach FL, 1987; 365. (b) Bentrude, W. G.; Tan, H.-W. J. Am. Chem. Soc. 1973, 95, 4666.

[^6]: (26) (a) Because 2-X-1,3,2 λ^{3}-dioxaphosphorinanes are sensitive to humidity, 2 -hydro-2-oxo-1,3,2 λ^{5}-dioxaphosphorinanes ${ }^{27}$ formed during workup were observed in crude oils as byproducts in percentages up to 10%; some other minor contaminants (less than 2%) were triethylammonium chloride or residual phenol. (b) Range values are the result of several experiments.
 (27) Mosbo, J. A.; Verkade, J. G. J. Am. Chem. Soc. 1973, 95, 204.
 (28) Majoral, J.-P.; Navech, J. Bull. Soc. Chim. Fr. 1971, 1, 95.

[^7]: (29) Pritchard, G. J.; Vollmer, R. J. J. Org. Chem. 1963, 28, 1545.

